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Universal Spin Structure
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Any Dirac spin structure on a world manifold x is a subbundle of the composite
spinor bundle S ® S T ® X, where S T ® X is a bundle of tetrad gravitational
fields. The bundle S admits general covariant transformations that enable us to
discover the energy-momentum conservation law in gauge gravitation theory.

1. INTRODUCTION

Metric and metric-affine theories of gravity are formulated on the natural

bundles Y ® X (e.g., tensor bundles) which admit the canonical lifts of

diffeomorphisms of the base X. These lifts are general covariant transforma-
tions of Y. The invariance of a gravitational Lagrangian under these transfor-

mations leads to the energy-momentum conservation law, where the

gravitational energy-momentum flow reduces to the generalized Komar super-

potential (NovotnyÂ, 1984; Borowiec et al., 1994; Giachetta and Sardanashvily,

1996; Giachetta and Mangiarotti, 1997; Sardanashvily, 1997). Difficulties

arise in gauge gravitation theory in the presence of Dirac fermion fields. The
corresponding spin structure is associated with a certain gravitational field,

and it is not preserved under general covariant transformations.

To overcome these difficulties, we will consider the universal twofold

covering group
,
GL4 of the general linear group GL4 5 GL+ (4, R) and the

corresponding twofold covering bundle
,
LX of the bundle of linear frames LX

(Dabrowski and Percacci, 1986; Lawson and Michelson, 1989; Switt, 1993).

One can consider the spinor representations of the group
,
GL4, which, however,

are infinite dimensional (Hehl et al., 1995). At the same time, the following

procedure enables us to not exceed the scope of standard fermion models.

The total space of the
,
GL4-principal bundle

,
LX ® X is the Ls-principal bundle

,
LX ® S T with the structure group Ls 5 SL(2, C) over the quotient bundle
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S T 5 ,
LX / Ls ® X

whose sections are tetrad gravitational fields h. Let us consider the spinor

bundle

S 5 (
,
LX 3 V )/Ls

associated with the principal bundle
,
LX ® S T. Given a tetrad field h, the

restriction of S to h(X) , S T is a subbundle of the composite spinor bundle

S ® S T ® X

which is exactly the spin structure associated with the gravitational field h.
General covariant transformations of the frame bundle LX and, consequently,

of the bundles
,
LX and S are defined.

2. PRELIMINARIES

Manifolds throughout are real, finite-dimensional, Hausdorff, second-

countable, and connected. By a world manifold X is meant a 4-dimensional

manifold which is noncompact, orientable, and parallelizable in order for a
pseudo-Riemannian metric, a spin structure, and a causal space-time structure

to exist on X. Note that every noncompact manifold admits a pseudo-Rieman-

nian metric, and a noncompact 4-dimensional manifold X has a spin structure

iff it is parallelizable. Moreover, this spin structure is unique (Geroch, 1968;

Avis and Isham, 1980).

Let p LX: LX ® X be the principal bundle of oriented linear frames in
the tangent spaces to a world manifold X (or simply the frame bundle). Its

structure group is GL4. A world manifold X, by definition, is parallelizable

iff the frame bundle LX ® X is trivial. Given the holonomic frames { - m } in

the tangent bundle TX, every element {Ha} of the frame bundle LX takes the

form Ha 5 H m
a - m , where H m

a is a matrix element of the group GL4. The frame

bundle LX is provided with the bundle coordinates (x l , H m
a ). In these coordi-

nates, the canonical action of the structure group GL4 on LX reads

Rg: H m
a j H m

b gb
a, g P GL4

The frame bundle LX is equipped with the canonical R4-valued 1-form

u LX 5 H a
m dx m ^ ta (2.1)

where {ta} is a fixed basis for R4 and Hb
m is the inverse matrix of H m

a .

The frame bundle LX ® X belongs to the category of natural bundles.

Every diffeomorphism f of X gives rise canonically to the automorphism
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fÄ : (x l , H l
a) j ( f l (x), - m f l H m

a ) (2.2)

of LX and to the corresponding automorphisms (general covariant
transformations)

fÄ : T 5 (LX 3 V )/GL4 ª ( fÄ (LX) 3 V )/GL4

of any fiber bundle T associated with LX. In particular, if T 5 TX, the lift

fÄ 5 Tf is the familiar tangent morphism to f.
The lift (2.2) yields the canonical horizontal lift t Ä of every vector field

t on X onto the principal bundle LX and the associated bundles. The canonical
lift of t over LX is defined by the relation L t Ä u LX 5 0. The corresponding

canonical lift of t onto the tensor bundle

( ^
m

TX ) ^ ( ^
k

T * X )

reads

t Ä 5 t m - m 1 [ - n t a 1xÇ
n a 2 ? ? ? a m
b 1 ? ? ? b k 1 ? ? ? 2 - b 1 t

n xÇ
a 1 ? ? ? a m
n b 2 ? ? ? b k 2 ? ? ? ]

-
- xÇ

a 1 ? ? ? a m
b 1 ? ? ? b k

(2.3)

A pseudo-Riemannian metric g on a world manifold X, called a world

metric, is represented by a section of the metric bundle

S PR 5 GLX/O(1, 3) (2.4)

where by GLX is meant the bundle of all linear frames in TX, and O(1, 3)

is the complete Lorentz group. Since X is oriented, S PR is associated with

the bundle LX of oriented frames in TX. Its typical fiber is the quotient space

GL(4, R)/O(1, 3), homeomorphic to the topological space RP3 3 R7, where

by RP3 is meant the 3-dimensional real projective space. For the sake of
simplicity, we will often identify the metric bundle with an open subbundle

of the tensor bundle S RP , Ú
2

TX with coordinates (x l , s m n ). By s m n are

meant the components of the inverse matrix, and s 5 det( s m n ). The canonical

lift t Ä , (2.3), onto S PR reads

t Ä 5 t l - l 1 ( - n t a s n b 1 - n t b s n a )
-

- s a b (2.5)

A linear connection on TX and T *X, called a world connection, is given by

coordinate expressions

K 5 dx l ^ 1 - l 1 K m
l n xÇ n

-
- xÇ m 2 (2.6)

K* 5 dx l ^ 1 - l 2 K m
l n xÇ m

-
- xÇ n 2 (2.7)



1268 Sardanashvily

There is one-to-one correspondence between the world connections and the

sections of the quotient bundle

CK 5 J1LX/GL4 (2.8)

where by J1 LX is meant the first-order jet manifold of the frame bundle LX
ª X. With respect to the holonomic frames in TX, the bundle CK is coordinat-

ized by (x l , k n
l a ), so that, for any section K of CK ª X,

k n
l a + K 5 K n

l a

are the coefficients of the world connection K, (2.6). There exists the canoni-

cal lift

t Ä 5 t m - m 1 [ - n t a k n
m b 2 - b t n k a

m n 2 - m t n k a
n b 1 - m b t a ]

-
- k a

m b
(2.9)

onto CK of a vector field t on X.

Note that, if a vector field t is nonvanishing at a point x P X, then there

exists a local symmetric connection K around x such that t is its integral
section, i.e., - n t a 5 K a

n b t b . Then the canonical lift t Ä , (2.3), can be found

locally as the horizontal lift of t by K.

3. DIRAC SPINORS

Let M be the Minkowski space equipped with the Minkowski metric

which reads

h 5 diag (1, 2 1, 2 1, 2 1)

with respect to a basis {ea} for M. Let C1,3 be the complex Clifford algebra

generated by elements of M. It is isomorphic to the real Clifford algebra R2,3,

whose generating space is R5 with the metric diag(1, 2 1, 2 1, 2 1, 1).

Its subalgebra generated by the elements of M , R5 is the real Clifford

algebra R1,3.

A spinor space V is defined to be a minimal left ideal of C1,3 (Crawford,
1991; Rodrigues and De Souza, 1993; Obukhov and Solodukhin, 1994). We

have the representation

g : M ^ V ª V, g (ea) 5 g a (3.1)

of elements of the Minkowski space M , C1,3 by the Dirac g -matrices on

V. Different ideals lead to equivalent representations (3.1). The spinor space

V is provided with the spinor metric

a(v, v8) 5 1±2 (v+ g 0v8 1 v8+ g 0v) (3.2)

since the element e0 P M satisfies the conditions
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(e0)+ 5 e0, (e0e)+ 5 e0e, " e P M

The Clifford group G1,3 comprises all invertible elements ls of the real

Clifford algebra R1,3 such that the corresponding inner automorphisms pre-

serve the Minkowski space M , R1,3 that is,

lsel 2 1
s 5 l(e), e P M (3.3)

where l P O(1, 3) is a Lorentz transformation of M. Thus, we have an
epimorphism of the Clifford group G1,3 onto the Lorentz group O(1, 3). Since

the action (3.3) of the Clifford group on the Minkowski space M is not

effective, one usually considers its pin and spin subgroups. The subgroup

Pin(1, 3) of G1,3 is generated by elements e P M such that h (e, e) 5 6 1.

The even part of Pin(1, 3) is the spin group Spin(1, 3). Its component of the

unity Ls . SL(2, C) is the twofold universal covering group zL:Ls ª L of the
proper Lorentz group L 5 SO0(1, 3). Recall that L is homeomorphic to RP3 3
R3. The Lorentz group L acts on the Minkowski space M by the generators

Lc
abd 5 h ad d c

b 2 h bd d c
a (3.4)

The Clifford group G1,3 acts on the spinor space V by left multiplications

G1,3 { ls: v j lsv, v P V

This action preserves the representation (3.1), i.e.,

g (lM ^ lsV) 5 ls g (M ^ V ) (3.5)

The spin group Lr acts on the spinor space V by the generators

Lab 5 1±4 [ g a, g b] (3.6)

Since L 1
ab g 0 5 2 g 0Lab, this action preserves the spinor metric (3.2).

Let us consider a bundle of Minkowski spaces MX ª X over a world

manifold X. This bundle is extended to the bundle of Clifford algebras CX
with the fibers Cx X generated by the fibers Mx X of MX (Benn and Tucker,

1987; Rodrigues and Vaz, 1996). The bundle CX has the structure group
Aut(C1,3) of inner automorphisms of the Clifford algebra C1,3. This structure

group is reducible to the Lorentz group SO(1, 3), and the bundle of Clifford

algebras CX contains the subbundle MX of the generating Minkowski spaces.

However, CX does not necessarily contain a spinor subbundle, because a

spinor subspace V of C1,3 is not stable under inner automorphisms of C1,3.

As has been shown (Benn and Tucker, 1988; Rodrigues and Vaz, 1996), the
above-mentioned spinor subbundle SM exists if the transition functions of CX
can be lifted from Aut(C1,3) to G1,3. This agrees with the usual conditions

of existence of a spin structure. The bundle MX of Minkowski spaces must

be isomorphic to the cotangent bundle T *X for sections of the spinor bundle
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SM to describe Dirac fermion fields on a world manifold X. In other words,

we should consider a spin structure on the cotangent bundle T *X of X (Lawson

and Michelson, 1989). There are several almost equivalent definitions of
such a spin structure (Avis and Isham, 1980; Benn and Tucker, 1987; Lawson

and Michelson, 1989; Van der Heuvel, 1994). A Dirac spin structure on a

world manifold X is said to be a pair (Ps, zs) of an Ls-principal bundle Ps ®
X and a principal bundle morphism

zs: Ps ® LX (3.7)

Since the homomorphism Ls ® GL4 factorizes through the epimorphism Ls ®
L, every bundle morphism (3.7) factorizes through a morphism of Ps onto

some L-principal subbundle of the frame bundle LX. It follows that the

necessary condition for the existence of a Dirac spin structure on X is that

the structure group GL4 of LX is reducible to the proper Lorentz group L.

4. REDUCED STRUCTURE

Let p PX : P ® X be a principal bundle with a structure group G, which

acts freely and transitively on P on the right:

Rg: p j pg, p P P, g P G (4.1)

Let

Y 5 (P 3 V )/G (4.2)

be a P-associated bundle with a typical fiber V on which the structure group
G acts on the left. By [ p] we denote the restriction of the canonical morphism

P 3 V ® (P 3 V )/G

to {p} 3 V and write [ p](v) 5 (p, v) ? G.
By a principal automorphism of a principal bundle P is meant its auto-

morphism F which is equivariant under the canonical action (4.1), that is,

Rg C F 5 F C Rg for all g P G. A principal automorphism yields the

corresponding automorphism

F Y : (P 3 V )/G ® ( F (P) 3 V )/G (4.3)

of every P-associated bundle Y, (4.2). An automorphism F over IdX is

called vertical.

Let H be a Lie subgroup of G. We have the composite bundle

P ® P/H ® X (4.4)

where
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S 5 P/H ®
p S X

X (4.5)

is a P-associated bundle with the typical fiber G/H, and

P S 5 P ®
p

P S
P/H (4.6)

is a principal bundle with the structure group H. The structure group G of a

principal bundle P is said to be reducible to the subgroup H if there exists

an H-principal subbundle Ph of P. This subbundle is called a reduced Gx
H-structure (Kobayashi, 1972; Gordejuela and MasqueÂ, 1995). Recall the

following theorem (Kobayashi and Nomizu, 1963).

Theorem 1. There is one-to-one correspondence Ph 5 p 2 1
P S (h(X )) between

the H-principal subbundles Ph of P and the global sections h of the quotient

bundle P/H ® X. Given such a section h, let us consider the restriction h*P S

of the H-principal bundle P S (4.6) to h(X ). This is an H-principal bundle

over X, which is isomorphic to the reduced subbundle Ph of P.

In general, there are topological obstructions to the reduction of a struc-

ture group of a principal bundle to a subgroup. A structure group G of a

principal bundle P is reducible to its closed subgroup H if the quotient G/H
is homeomorphic to a Euclidean space. In this case, all H-principal subbundles
of P are isomorphic to each other as H-principal bundles (Steenrod, 1972).

In particular, a structure group is always reducible to its maximal compact

subgroup. We have the following assertions (Giachetta et al., 1997).

Proposition 2. Every vertical principal automorphism F of the principal

bundle P ® X sends a reduced subbundle Ph onto an isomorphic H-principal

subbundle Ph8. Conversely, let two reduced subbundles Ph and Ph8 of a princi-

pal bundle P be isomorphic to each other as H-principal bundles and let F :

Ph ® Ph8 be an isomorphism. Then F can be extended to a vertical automor-
phism of P.

Given a reduced subbundle Ph of a principal bundle P, let

Yh 5 (Ph 3 V )/H (4.7)

be the Ph-associated bundle with a typical fiber V. If Ph8 is another reduced

subbundle of P which is isomorphic to Ph, the fiber bundles Y h and Y h8 are
isomorphic, but not canonically isomorphic in general.

Proposition 3. Let Ph be an H-principal subbundle of a G-principal

bundle P. Let Y be the Ph-associated bundle (4.7) with a typical fiber V. If
V carries a representation of the whole group G, the fiber bundle Y h is

canonically isomorphic to the P-associated fiber bundle (4.2).

It follows that, given an H-principal subbundle Ph of P, any P-associated

bundle Y with the structure group G is canonically equipped with a structure
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of the Ph-associated fiber bundle Y h with the structure group H. Briefly, we

will write

Y 5 (P 3 V )/G 5 (Ph 3 V )/H

However, Ph and Ph8-associated bundle structures on Y are not equivalent

because, given bundle atlases C h of Ph and C h8 of Ph8, the union of the

associated atlases of Y has necessarily G-valued transition functions between

the charts from C h and C h8.

5. DIRAC SPIN STRUCTURE

Since a world manifold is parallelizable, the structure group GL4 of the

frame bundle LX is reducible to the Lorentz group L. The corresponding L-

principal subbundle LhX is said to be a Lorentz structure.
In accordance with Theorem 1, there is one-to-one correspondence

between the L-principal subbundles LhX of LX and the global sections h of

the quotient bundle

S T 5 LX/L (5.1)

called the tetrad bundle. This is an LX-associated bundle with the typical

fiber GL4/L. Since the group GL4 is homotopic to its maximal compact
subgroup SO(4) and the Lorentz group L is homotopic to SO(3), GL4/L is

homotopic to SO(4)/SO(3) 5 S3, and homeomorphi c to S3 3 R7. The bundle

(5.1) is the twofold covering of the metric bundle S PR (2.4). Its global sections

are called the tetrad fields.

Since X is parallelizable, any two Lorentz subbundles LhX and Lh8X are

isomorphic to each other. By virtue of Proposition 2, there exists a vertical
bundle automorphism F of LX which sends LhX onto Lh8X. The associated

vertical automorphism F S of the fiber bundle S T ® X transforms the tetrad

field h into the tetrad field h8.
Every tetrad field h defines an associated Lorentz atlas C h 5 {U z , zh

z }

of LX such that the corresponding local sections zh
z of the frame bundle LX

take their values into the Lorentz subbundle LhX. Given a Lorentz atlas C h,

the pullback

zh*z u LX 5 ha ^ ta 5 ha
l dx l ^ ta (5.2)

of the canonical form u LX, (2.1), by a local section zh
z is said to be a (local)

tetrad form. It determines the tetrad coframes

ha(x) 5 ha
m (x)dx m , x P U z

in the cotangent bundle T *X, which are associated with the Lorentz atlas
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C h. The coefficients ha
m of the tetrad forms and the inverse matrix elements

h m
a 5 H m

a C zh
z are called tetrad functions. Given a Lorentz atlas C h, the tetrad

field h can be represented by the family of tetrad functions {h m
a }. We have

the familiar relation g 5 ha ^ hb h ab between tetrad and metric fields.

Given a tetrad field h, let LhX be the corresponding Lorentz subbundle.

Since X is noncompact and parallelizable, the principal bundle LhX can be

extended uniquely to an Ls-principal bundle Ph ® X, called the h-associated

principal spinor bundle (Geroch, 1968). We have the principal bundle

morphism

zh: Ph ® LhX, zh C Rg 5 RzL(g), " g P Ls (5.3)

This is the h-associated Dirac spin structure on a world manifold.

Let us consider the LhX-associated bundle of Minkowski spaces

MhX 5 (LhX 3 M )/L 5 (Ph 3 M )/Ls (5.4)

and the Ph-associated spinor bundle

Sh 5 (Ph 3 V )/Ls (5.5)

called the h-associated spinor bundle. By virtue of Proposition 3, the bundle

MhX, (5.4), is isomorphic to the cotangent bundle

T *X 5 (LhX 3 M )/L (5.6)

Then there exists the representation

g h: T *X ^ Sh 5 (Ph 3 (M ^ V ))/Ls ® (Ph 3 g (M ^ V ))/Ls 5 Sh

(5.7)

of covectors to X by the Dirac g -matrices on elements of the spinor bundle

Sh. Relative to an atlas {z z } of Ph and to the associated Lorentz atlas {zh
z 5

zh C z z } of LX, the representation (5.7) reads

y A( g h(h
a(x) ^ v)) 5 g aA

B yB(v), v P S h
x

where y A are the corresponding bundle coordinates of Sh, and ha are the tetrad

coframes (5.2). For brevity, we will write

hÃa 5 g h(h
a) 5 g a, dÃx l 5 g h(dx l ) 5 h l

a(x) g a

Sections sh of the h-associated spinor bundle Sh, (5.5), describe Dirac

fermion fields in the presence of the tetrad field h. Indeed, let Ah be a principal

connection on Sh, and let

D: J 1S h ® T *X ^
Sh

, S h

D 5 ( yA
l 2 Aab

l LA
abB yB)dx l ^ - A
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be the corresponding covariant differential. The first-order differential Dirac

operator is defined on Sh by the composition

D h 5 g h C D: J 1Sh ® T *X ^ Sh ® Sh (5.8)

yA C D h 5 h g
a g aA

B (yB
l 2 1±2 Aab

l LA
abB yB)

The h-associated spinor bundle Sh is equipped with the fiber spinor metric

ah(v, v8) 5 1±2 (v+ g 0v8 1 v8+ g 0v), v, v8 P Sh

Using this metric and the Dirac operator (5.8), one can define the Lagran-
gian density

Lh 5 {i±2 h l
q[ y 1

A ( g 0 g q)A
B(yB

l 2 1±2 Aab
l LB

abCyC) (5.9)

2 ( y 1
l A 2 1±2 Aab

l y 1
C L 1

ab)( g 0 g q)A
ByB] 2 my 1

A ( g 0)A
ByB} det(ha

m )

on J 1Sh which describes Dirac fermion fields in the presence of a background

tetrad field h and a background connection Ah on Sh.

6. SPIN CONNECTIONS

Let us recall the following theorem (Kobayashi and Nomizu, 1963).

Theorem 4. Let P8 ® X and P ® X be principle bundles with the

structure groups G8 and G, respectively. Let F : P8 ® P be a bundle morphism

over X with the corresponding homomorphism G8 ® G. For every principal

connection A8 on P8, there exists a unique principal connection A on P such

that T F sends the horizontal subspaces of A8 onto the horizontal subspaces
of A.

It follows that every principal (spin) connection

Ah 5 dx l ^ ( - l 1 1±2 Aab
g eab) (6.1)

on Ph defines a principal (Lorentz) connection on LhX which is given by the

same expression (6.1). Conversely, the pullback z*h v A on Ph of a connection
form v A of a Lorentz connection Ah on LhX is equivariant under the action

of group Ls on Ph and, consequently, it is a connection form of a spin

connection on Ph. In particular, the Levi-Civita connection of a tetrad field

h gives rise to a spin connection

Aab
l 5 h kbha

m ( - l h
m
k 2 h n

k{
m
l n }) (6.2)

on the h-associated spinor bundle Sh.

Moreover, every world connection K on a world manifold X also defines

a spin connection on an h-associated principal spinor bundle Ph (Giachetta

and Mangiarotti, 1997; Sardanashvily, 1997).



Universal Spin Structure 1275

In accordance with Theorem 4, every Lorentz connection Ah,(6.1), on

a Lorentz subbundle LhX of LX gives rise to a world connection

K m
l n 5 hk

n - l h
m
k 1 h kah

m
b hk

n Aab
l (6.3)

on LX. At the same time, every principal connection K on the frame bundle

LX defines a Lorentz principal connection Kh on an L-principal subbundle
LhX as follows.

It is readily observed that the Lie algebra of the general linear group

GL4 is the direct sum

g(GL4) 5 g(L) % m

of the Lie algebra g(L) of the Lorentz group and a subspace m , g(GL4)

such that ad(l)(m) , m, for all l P L. Let v K be a connection form of a
world connection K on LX. Then, by a well-known theorem (Kobayashi and

Nomizu, 1963), the pullback over LhX of the g(L)-valued component v L of

v K is a connection form of a principal connection Kh on the Lorentz subbundle

LhX. To obtain Kh, let us consider a local connection 1-form of the connection

K with respect to a Lorentz atlas C h of LX given by the tetrad forms ha.

This reads

z*h v K 5 K b
l kdx l ^ ek

b

K b
l k 5 2 hb

m - l h
m
k 1 K m

l n h
b
m h n

k

where {ek
b} is the basis for the Lie algebra of the group GL4. Then, the

Lorentz part of this form is precisely the local connection 1-form of the

connection Kh on LhX. We have

z*h v L 5 1±2 Aab
l dx l ^ eab (6.4)

Aab
l 5 1±2 ( h kbha

m 2 h kahb
m )( - l h

m
k 2 h n

kK
m
l n )

If K is a Lorentz connection Ah, then obviously Kh 5 Ah.

The connection Kh,(6.4), on LhX yields the corresponding spin connection

on Sh

Kh 5 dx l ^ [ - l 1 1±4 ( h kbha
m 2 h kahb

m )( - l h
m
k 2 h n

kK
m
l n )L

A
abB yB - A] (6.5)

where Lab are the generators (3.6) (Giachetta and Mangiarotti, 1997; Sarda-

nashvily, 1997). Such a connection has been considered by Ponomarev and

Obukhov (1982), Aringazin and Mikhailov (1991), and Tucker and Wang
(1995). Substituting the spin connection (6.5) into the Dirac operator (5.8)

and the Dirac Lagrangian density (5.9), we obtain a description of Dirac

fermion fields in the presence of an arbitrary world connection, not only of

the Lorentz type.
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One can use the connection (6.5) to obtain a horizontal lift onto Sh of

a vector field t on X. This lift reads

t Kh 5 t l - l 1 1±4 t l ( h kbha
m 2 h kahb

m )( - l h
m
k 2 h n

kK
m
l n )L

A
abByB - A (6.6)

Moreover, we have the canonical horizontal lift

t Ä 5 t l - l 1 1±4 ( h kbha
m 2 h kahb

m )( t l - l h
m
k 2 h n

k - n t m )LA
abByB - A (6.7)

of vector fields t on X onto the h-associated spinor bundle Sh (Sardanashvily,
1997). To construct the canonical lift (6.7), one can write the canonical lift

of t on the frame bundle LX with respect to a Lorentz atlas C h and take its

Lorentz part. Another approach is the following. Let us consider a local

nonvanishing vector field t and a local world symmetric connection K for

which t is an integral section. The horizontal lift (6.6) of t by means of this

connection is given by the expression (6.7). In a straightforward manner, one
can check that (6.7) is a well-behaved lift of any vector field t on X. The

canonical lift (6.7) is brought into the form

t Ä 5 t {} 2 1±4 ( h kbha
m 2 h kahb

m )h n
k ¹ n t m LA

abByB - A

where t {} is the horizontal lift (6.6) of t by means of the spin Levi-Civita

connection (6.2) of the tetrad field h, and ¹ n t m are the covariant derivatives

of t relative to the same Levi-Civita connection (Kosmann, 1972; Fatibene

et al., 1996).

The canonical lift (6.7) fails to be a generator of general covariant

transformations because it does not involve transformations of tetrad fields.
To define general covariant transformations of spinor bundles, we should

consider spinor structures associated with different tetrad fields. The difficulty

arises because, though the principal spinor bundles Ph and Ph8 are isomorphic,

the associated structures of bundles of Minkowski spaces MhX and Mh8X,

(5.4), on the cotangent bundle T *X are not equivalent, and so are the represen-

tations g h and g h8, (5.7), for different tetrad fields h and h8 (Sardanashvily
and Zakharov, 1992; Sardanashvily, 1995). Indeed, let

t* 5 t m dx m 5 tah
a 5 t8ah8a

be an element of T *X. Its representations g h and g h8, (5.7), read

g h(t*) 5 ta g a 5 t m h m
a g a, g h8(t*) 5 t8a g a 5 t m h8 m

a g a

These representations are not equivalent because no isomorphism F s of Sh

onto Sh8 can obey the condition

g h8(t*) 5 F s g h(t*) F 2 1
s " t* P T*X

It follows that every Dirac fermion field must be described by a pair
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with a certain tetrad field. We thus observe the phenomenon of symmetry

breaking in gauge gravitation theory which exhibits the physical nature of

gravity as a Higgs field (Sardanashvily, 1991; Sardanashvily and Zakh-
arov, 1992).

7. SPONTANEOUS SYMMETRY BREAKING

Spontaneous symmetry breaking is a quantum phenomenon modeled by

classical Higgs fields. In gauge theory on a principal bundle P ª X, the

necessary condition for spontaneous symmetry breaking to take place is the
reduction of the structure group G of P to the subgroup H of exact symmetries.

Higgs fields are described by global sections h of the quotient bundle S , (4.5).

In accordance with Theorem 1, the set of Higgs fields h is in bijective

correspondence with that of reduced H-principal subbundles Ph of P. Given

such a subbundle Ph, let Yh, (4.7), be the associated bundle with a typical

fiber V which admits a representation of the group H of exact symmetries,
but not the whole symmetry group G. Its sections sh describe matter fields

in the presence of the Higgs fields h. In general, Yh is not associated or

canonically associated with other H-principal subbundles of P. It follows that

V-valued matter fields can be represented only by pairs with Higgs fields.

The goal is to describe the totality of these pairs (sh, h) for all Higgs fields
(Sardanashvily, 1992, 1993).

Let us consider the composite bundle (4.4) and the composite bundle

Y ®
p

Y S
S ®

p S X
X (7.1)

where Y ® S is the bundle

Y 5 (P 3 V )/H (7.2)

associated with the H-principal bundle P S , (4.6). There is the canonical

isomorphism ih: Y h ® h*Y of the Ph-associated bundle Y h to the subbundle

of Y ® X which is the restriction h*Y 5 (h*P 3 V )/H of the bundle Y ®
S to h(X ) , S , i.e.,

ih(Y
h) > p 2 1

Y S (h(X )) (7.3)

Then every global section sh of Y h corresponds to the global section ih C sh

of the composite bundle (7.1). Conversely, every global section s of the
composite bundle (7.1) which projects onto a section h 5 p Y S C s of the

bundle S ® X takes its values into the subbundle ih(Y
h) , Y in accordance

with the relation (7.3). Hence, there is one-to-one correspondence between

the sections of the bundle Y h and the sections of the composite bundle (7.1)

which cover h.
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Thus, it is precisely the composite bundle (7.1) whose sections describe

the above-mentioned totality of the pairs (sh, h) of matter fields and Higgs

fields in gauge theory with broken symmetries (Sardanashvily and Zakharov,
1992; Sardanashvily, 1991, 1995).

The feature of the dynamics of field systems on composite bundles

consists in the following. Let the composite bundle Y, (7.1), be coordinatized

by (x l , s m, yi), where (x l , s m) are bundle coordinates on S ® X. Let

A S 5 dx l ^ ( - l 1 Ai
l - i) 1 d s m ^ ( - m 1 A i

m - i) (7.4)

be a principal connection on the bundle Y ® S . This connection defines

the splitting

VY 5 VY S %
Y

(Y 3
S

V S )

yÇ i - i 1 s Ç m - m 5 ( yÇ i 2 Ai
m s Ç m) - i 1 s Ç m( - m 1 Ai

m - i)

Using this splitting, one can construct the first-order differential operator

DÄ : J1Y ® T *X ^
Y

VY S

DÄ 5 dx l ^ (yi
l 2 Ai

l 2 A i
m s m

l ) - i (7.5)

on the composite bundle Y. The operator (7.5) posesses the following property.
Given a global section h of S , its restriction

DÄ
h 5 DÄ C J 1 ih: J 1Y h ® T *X ^ VY h (7.6)

DÄ
h 5 dx l ^ (yi

l 2 Ai
l 2 Ai

m - l hm) - i

to Y h is exactly the familiar covariant differential relative to the principal

connection

Ah 5 dx l ^ [ - l 1 (Ai
m - l h

m 1 Ai
l ) - i]

on the bundle Y h ® X, which is induced by the principal connection (7.4)

on the fiber bundle Y ® S by the imbedding ih (Kobayashi and Nomizu, 1963).

8. UNIVERSAL SPIN STRUCTURE

All spin structures on a manifold X which are related to the twofold
universal covering groups possess the following properties (Greub and

Petry, 1978). Let P ® X be a principal bundle with a structure group G
with the fundamental group p 1(G) 5 Z2. Let GÄ be the universal covering

group of G. The topological obstruction to the existence of a GÄ -principal

bundle PÄ ® X covering the bundle P is given by the CÏ ech cohomology
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group H 2(X; Z2) of X with coefficients in Z2. Roughly speaking, the

principal bundle P defines an element of H 2(X; Z2) which must be zero,

so that P ® X gives rise to PÄ ® X. Nonequivalent lifts of a G-principal
bundle P to a GÄ -principal bundle are classified by elements of the CÏ ech

cohomology group H1(X; Z2).

In particular, the well-known topological obstruction to the existence of

a spin structure is the nonzero second Stiefel±Whitney class of X. In the

case of 4-dimensional noncompact manifolds, all pseudo-Riemannian spin

structures are equivalent.
Let us turn to fermion fields in gauge gravitation theory, basing our

consideration on the following two facts (Giachetta et al., 1997).

Proposition 5. The L-principal bundle.

PL 5 GL4 ® GL4/L (8.1)

is trivial.

Proposition 6. Since the first homotopy group of the group GL4 is

Z2, GL4 admits the universal twofold covering group
,
GL4. We have the

commutative diagram

,
GL4 ® GL4

(8.2)

-
½
½
½

-
½
½
½

Ls ®
z
L

L

A universal spin structure on X is defined to be a pair consisting of a
,
GL4-principal bundle

,
LX ® X and a principal bundle morphism over X

zÄ :
,
LX ® LX (8.3)

(Dabrowski and Percacci, 1986; Percacci, 1986; Switt, 1993). This is unique
since X is parallelizable. In virtue of Proposition 6, the diagram

,
LX ®

zÄ

LX

(8.4)

-
½
½
½

-
½
½
½

Ph ®
z
h

LhX

commutes for any tetrad field h (Fulp et al., 1994; Giachetta et al., 1997).

It follows that the quotient
,
LX/Ls is exactly the quotient S T , (5.1), so that

there is the commutative diagram
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,
LX ®

zÄ

LX

(8.5)

-
½

½
½

-
½
½
½

S T

Let us consider the composite bundle

,
LX ® S T ® X (8.6)

where
,
LX ® S T is the Ls-principal bundle. For each tetrad field h: X ® S T ,

the restriction of the Ls-principal bundle
,
LX ® S T to h(X) , S T is isomorphic

to the h-associated principal spinor bundle Ph. Therefore, the diagram (8.5)

is called the universal Dirac spin structure.

The universal Dirac spin structure (8.5) can be regarded as the Ls-spin
structure on the bundle of Minkowski spaces

EM 5 (LX 3 M)/L ® S T

associated with the L-principal bundle LX ® S T. Since the principal bundles

LX and PL (8.1) are trivial, so is the bundle EM ® S T. Hence, it is isomorphic

to the pullback

S T 3
x

T *X (8.7)

One can show that a spin structure on this bundle is unique (Giachetta et
al., 1997).

Let us consider the composite spinor bundle

S ®
p

S S
S T ®

p S X
X (8.8)

where S 5 (
,
LX 3 V )/Ls is the spinor bundle S ® S T associated with the Ls-

principal bundle
,
LX ® S T . Given a tetrad field h, there is the canonical

isomorphism

ih: Sh 5 (Ph 3 V)/Ls ® (h*
,
LX 3 V )/Ls

of the h-associated spinor bundle Sh, (5.5), onto the restriction h*S of the

spinor bundle S ® S T to h(X) , S T . Thence, every global section sh of the

spinor bundle Sh corresponds to the global section ih C sh of the composite
spinor bundle (8.8). Conversely, every global section s of the composite

spinor bundle (8.8), which projects onto a tetrad field h, takes its values into

the subbundle ih(S
h) , S.

Let the frame bundle LX ® X be provided with a holonomic atlas, and

let the principal bundles
,
LX ® S T and LX ® S T have the associated atlases
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{U e , zS
e } and {U e z e 5 zÄ C zS

e }. With these atlases, the composite spinor bundle

S is equipped with the bundle coordinates (x l , s m
a , yA), where (x l , s m

a ) are

coordinates on S T such that s m
a are the matrix components of the group

element (T f z C z e )( s ), s P U e , p S X ( s ) P U z . For each section h of S T, we

have ( s l
a C h)(x) 5 h l

a(x).

The composite spinor bundle S is equipped with the fiber spinor metric

aS (v, v8) 5 1±2 (v+ g 0v8 1 v8+ g 0v), p S S (v) 5 p S S (v8)

Since the bundle of Minkowski spaces EM ® S T is isomorphic to the
pullback bundle (8.7), there exists the representation

g S : T *X ^
S T

S 5 (
,
LX 3 (M ^ V ))/Ls ® (

,
LX 3 g (M ^ V ))/Ls 5 S (8.9)

given by the coordinate expression

dÃx l 5 g S (dx l ) 5 s l
a g a

Restricted to h(X) , S T , this representation recovers the morphism g h, (5.7).

Using this representation, one can construct the total Dirac operator on

the composite spinor bundle S as follows. Since the bundles which make up
the composite bundle (8.6) are trivial, let us consider a principal connection

A S , (7.4), on the Ls-principal bundle
,
LX ® S T given by the local connec-

tion form

A S 5 (Aab
l dx l 1 Akab

m d s m
k ) ^ Lab, (8.10)

where

Aab
l 5 2 1±2 ( h kb s a

m 2 h ka s b
m ) s n

kK l
m

n

Akab
m 5 1±2 ( h kb s a

m 2 h ka s b
m ) (8.11)

and K is a world connection on X. This connection defines the associated

spin connection

AS 5 dx l ^ ( - l 1 1±2 Aab
l LA

abB yB - A) 1 d s m
k ^ ( - k

m 1 1±2 Akab
m LA

abB yB - A)

(8.12)

on the spinor bundle S ® S T . Let h be a global section of S T ® X and Sh

the restriction of the bundle S ® S T to h(X). It is readily observed that the

restriction of the spin connection (8.12) to Sh is exactly the spin connec-

tion (6.5).

The connection (8.12) yields the first-order differential operator DÄ , (7.5),

on the composite spinor bundle S ® X, which reads
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DÄ : J 1S ® T *X ^
S T

S

DÄ 5 dx l ^ [yA
l 2 1±2 (Aab

l 1 Akab
m s m

l k)L
A
abB yB - A (8.13)

5 dx l ^ [yA
l 2 1±4 ( h kb s a

m 2 h ka s b
m )( s m

l k 2 s n
kK

m
l n )L

A
abB yB] - A

The corresponding restriction DÄ
h, (7.6), of the operator DÄ , (8.13), to J 1Sb ,

J 1S recovers the familiar covariant differential on the h-associated spinor

bundle Sh ® X relative to the spin connection (6.7).
Combining (8.9) and (8.13), we obtain the first-order differential operator

D 5 g S C DÄ : J 1S ® T *X ^
S T

S ® S (8.14)

y B C D 5 s l
a g aB

A [yA
l 2 1±4 ( h kb s a

m 2 h ka s b
m )( s m

l k 2 s n
kK

m
l n )L

A
abB yB]

on the composite spinor bundle S ® X. One can think of D as being the total

Dirac operator on S since, for every tetrad field h, the restriction of D to J 1Sh

, J 1S is exactly the Dirac operator D h,(5.8), on the h-associated spinor
bundle Sh in the presence of the background tetrad field h and the spin

connection (6.5).

It follows that gauge gravitation theory is reduced to the model of metric-

affine gravity and Dirac fermion fields. The total configuration space of this

model is the jet manifold J 1Y of the bundle product

Y 5 CK 3
S T

S (8.15)

where CK is the bundle of world connections (2.8). It is coordinatized by

(x m , s m
a , k a

m b ,yA).

Let J 1
S Y denotes the first-order jet manifold of the bundle Y ® S T . This

bundle can be provided with the spin connection

AY : ® J 1
S Y ®

pr2

J 1
S S

AY 5 dx l ^ ( - l 1 AÄ ab
l LA

abByB - A) 1 d s m
k ^ ( - k

m 1 Akab
m LA

abByB - A) (8.16)

where Akab
m is given by the expression (8.11), and

AÄ ab
l 5 2 1±2 ( h kb s a

m 2 h ka s b
m ) s n

kK
m
l n

Using the connection (8.16), we obtain the first-order differential operator

DÄ
Y : J 1Y ® T *X ^

S T

S

DÄ
Y 5 dx l ^ [y A

l 2 1±4 ( h kb s a
m 2 h ka s b

m )( s m
l k 2 s n

kk
m
l n )L

A
abByB] - A (8.17)

and the total Dirac operator
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D Y 5 g S C DÄ : J 1Y ® T *X ^
S T

S ® S (8.18)

yB C D Y 5 s l
a g aB

A [yA
l 2 1±4 ( h kb s a

m 2 h ka s b
m )( s m

l k 2 s n
kk

m
l n )L

A
abByB]

on the bundle Y ® X.

Given a section K: X ® CK, the restrictions of the spin connection AY ,

(8.16), the operator DÄ
Y , (8.17), and the Dirac operator D Y , (8.18), to K *Y are

exactly the spin connection (8.12) and the operators (8.13) and (8.14),

respectively.
The total Lagrangian density on the configuration space J 1Y of the

metric-affine gravity and fermion fields is the sum L 5 LMA 1 LD of the

metric-affine Lagrangian density LMA and the Dirac Lagrangian density

LD 5 {i±2 s l
q[ y 1

A ( g 0 g q)A
B( yB

l 2 1±4 ( h kb s a
m 2 h ka s b

m )( s m
l k 2 s n

kk
m
l n )L

B
abCyC)

2 ( y 1
l A 2 1±4 ( h kb s a

m 2 h ka s b
m )( s m

l k 2 s n
kk

m
l n )y

1
C L 1 C

abA)( g 0 g q)A
B yB] (8.19)

2 my 1
A ( g 0)A

B yB} ! | s | , s 5 det( s m n )

It is readily observed that

- LD

- k m
l n

1
- LD

- k m
n l

5 0 (8.20)

that is, the Dirac Lagrangian density (8.19) depends only on the torsion of
a world connection.

9. GENERAL COVARIANT TRANSFORMATIONS

Since a world manifold X is parallelizable and the universal spin structure

is unique, the
,
GL4-principal bundle

,
LX ® X as well as the frame bundle LX

admit the canonical lift of any diffeomorphism f of the base X. This lift is

defined by the commutative diagram

,
LX ®

F
Ä

,
LX

zÄ zÄ
½
½
½
¯

½
½
½
¯

LX ®
F

LX

½
½
½
¯

½
½
½
¯

X ®
f

X
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where F is the holonomic bundle automorphism of LX, (2.2), induced by f
(Dabrowski and Percacci, 1986).

The associated morphism of the spinor bundle S, (8.8), is given by
the relation

F Ä S: (p, n ) ? Ls ® ( F Ä ( p), n ) ? Ls, p P ,
LX, n P S (9.1)

Because F Ä is equivariant, this is a fiber-to-fiber automorphism of the bundle

S ® S T over the canonical automorphism of the LX-associated tetrad bundle

S T ® X induced by the diffeomorphi sm f of X. Thus, we have the commuta-

tive diagram

S ®
F
Ä

S
S

½
½
½
¯

½
½
½
¯

S T ®
F S

S T

½
½
½
¯

½
½
½
¯

X ®
f

X

of general covariant transformations of the spinor bundle S.

Accordingly, there exists a canonical lift t Ä onto S of every vector field

t on X. The goal is to find its coordinate expression. Difficulties arise because
the tetrad coordinates s m

a of S T depend on the choice of an atlas of the bundle

LX ® S T . Therefore, noncanonical vertical components appear in the coordi-

nate expression of t Ä .
A comparison with the canonical lift (2.5) of a vector field t over the

metric bundle S PR shows that the similar canonical lift of t over the tetrad

bundle S T takes the form

t S 5 t l - l 1 - n t m s n
c

-
- s m

c
1 Q m

c
-

- s m
c

(9.2)

where the terms Q m
c obey the condition

(Q m
a s n

o 1 Q n
a s m

b ) h ab 5 0

The term Q m
a - a

m is the above-mentioned noncanonical part of the lift (9.2).

Let us consider a horizontal lift t Ä S of the vector field t S onto the spinor

bundle S ® S T by means of the spin connection (8.12). It reads
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AS t Ä S 5 t l - l 1 - n t m s n
c

-
- s m

c

1 1±4 ( h kb s a
m 2 h ka s b

m ) s n
k( - n t m 2 K m

l n t n )(Lab
A

ByB) - A 1 L 1
ab

A
By 1

A - B)

1 Q m
c

-
- s m

c

1
1

4
Q m

k ( h kb s a
m 2 h ka s b

m )(Lab
A

ByB - A 1 (L 1 A
abBy 1

A - B)

Moreover, we obtain the desired canonical lift of t onto S:

t Ä S 5 t l - l 1 - n t m s n
c

-
- s m

c

1 Q m
c

-
- s m

c

1
1

4
Q m

k ( h kb s a
m 2 h ka s b

m )(Lab
A

B yB - A 1 (L 1
ab

A
B y 1

A - B)(9.3)

which can be written in the form

t Ä S 5 t l - l 1 - n t m s n
c

-
- s m

c

1

4
Q m

k ( h kb s a
m 2 h ka s b

m ) F 2 Ld
abc s n

d
-

- s n
c

1 LA
abByB - A 1 L 1 A

ab y 1
A - B G

where Ld
abc are the generators (3.4) (Giachetta et al., 1997). The corresponding

total vector field on the fibered product Y (8.15) reads

t Ä Y 5 t Ä 1 q

t Ä 5 t l - l 1 - n t m s n
c

-
- s m

c

(9.4)

1 [ - n t a k n
m b 2 - b t n k a

m n 2 - m t n k a
n b 1 - m b t a ]

-
- k a

m b

q 5
1

4
Q m

k ( h kb s a
m 2 h ka s b

m ) F 2 Ld
abc s n

d
-

- s n
c

1 LA
abByB - A 1 L 1 A

abBy 1
A - B G

Its canonical part t Ä , (9.4), is the generator of a local one-parameter group of

general covariant transformations of the bundle Y, whereas the vertical vector

field q is the generator of a local one-parameter group of principal (Lorentz)

automorphisms of the bundle S ª S T . By construction, the total Lagrangian

density L obeys the relations

LJ1 q LD 5 0 (9.5)

LJ1 t Ä LMA 5 0, LJ1 t Ä LD 5 0 (9.6)
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The relation (9.5) leads to the NoÈ ther conservation law, while the equalities

(9.6) lead to the energy-momentum one (Giachetta and Mangarotti, 1997;

Sardanashvily, 1997).
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